
European Heart Journal - Digital Health (2026) 7, ztaf150 
https://doi.org/10.1093/ehjdh/ztaf150

ORIGINAL ARTICLE

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

From haemodynamics to kidney risk: AI-based 
early prediction validated in general and burn 
ICU populations
Louis Boutin  1,2,3,*, Fedi Kadri4, Arij Chaftar4, Benjamin Deniau  2,5, 
Sakura Minani2,5, Stefanny M. Figueroa3, Christos E. Chadjichristos3, Anis Ghorbel4, 
Alexandre Mebazaa  2,5, and François Dépret2,5

1Department of Anaesthesiology and Intensive Care, Université Paris Cité, Hôpital Européen Georges Pompidou, AP-HP, 20 rue Leblanc, Paris 75015, France; 2INSERM, UMR 942, 
MASCOT: Cardiovascular Marker in Stress Condition, Université Paris Cité, Lariboisière Hospital, 43 bld de la chapelle, 75010 Paris, France; 3INSERM, UMRS 1155, CORAKID,  Sorbonne 
Université, Tenon Hospital, 4 rue de la chine, 75020 Paris, France; 4Precisia Care SA, 8 route de la corniche, 1066, Lausanne, Switzerland; and 5Department of Anaesthesiology, Critical Care 
Medicine and Burn Unit, AP-HP, Saint-Louis Hospital, DMU Parabol, FHU PROMICE, Université de Paris, Paris 75010, France
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Aims Acute kidney injury (AKI) is a frequent and severe complication in critically ill patients with cardiovascular instability. Current 
risk scores rely on delayed renal biomarkers such as serum creatinine (sCr) and blood urea nitrogen (BUN). We aimed to 
develop and validate machine learning (ML) models predicting AKI and major adverse kidney events (MAKE) exclusively from 
systemic physiological and haemodynamic data.

Methods 
and results

Two ML models were trained on the MIMIC-IV database: one including (sCr+/BUN+) and one excluding (sCr−/BUN−) 
renal parameters. External validation was performed in the eICU database and in a cohort of burn ICU patients from 
AP-HP. Model performance was assessed for early AKI and MAKE prediction up to 100 h before diagnosis. Systemic 
haemodynamic and physiological variables were the strongest predictors of AKI. In MIMIC-IV, the sCr−/BUN− model 
achieved auROC 0.78 at 72 h, approaching the sCr+/BUN+ model. In eICU, it outperformed the biomarker-based model 
at later time points (auROC 0.73). In the burn ICU cohort—representing a high-stress systemic environment—it maintained 
robust accuracy (auROC 0.75 at 24 h, 0.77 at 72 h). For MAKE prediction, the sCr−/BUN− model achieved auROC 0.87 
(burn cohort), 0.67 (eICU), and 0.77 (MIMIC-IV). Median lead time for AKI prediction exceeded 70 h.

Conclusion AI models based solely on non-renal parameters can accurately predict AKI and MAKE, even under extreme systemic stress 
such as severe burns. Haemodynamic signatures carry sufficient information to anticipate kidney dysfunction well in advance, 
opening the way to real-time, proactive cardio-renal risk stratification in ICU patients with acute heart failure, cardiogenic 
shock, and after cardiac surgery.
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Take Home Message
AI models based solely on systemic haemodynamic and physiologic
al variables can anticipate AKI more than 70 h before diagnosis by 
renal biomarkers. This performance is comparable to renal bio
marker–based models, even under extreme stress conditions such 
as severe burns. Haemodynamic signatures thus offer a complemen
tary and earlier window for proactive cardio-renal risk management.

Clinical Perspective

What is new?
Machine learning models relying on systemic haemodynamic and 
physiological parameters (without renal biomarkers) accurately 
predict acute kidney injury (AKI) and major adverse kidney events 
(MAKE). These models anticipate AKI up to 70–100 h before clinical 
diagnosis, even in high-stress ICU settings such as severe burns. 
Haemodynamic signatures act as early, reliable indicators of im
pending renal dysfunction.

What are the clinical implications?
Traditional renal biomarkers (serum creatinine, BUN) remain im
portant but are delayed indicators of injury. Haemodynamic moni
toring, already standard in critically ill and cardiac patients, can be 

leveraged by AI to provide earlier and actionable kidney risk predic
tion. This complementary paradigm may enable earlier intervention 
in cardio-renal syndromes, with relevance for acute heart failure, 
cardiogenic shock, and post–cardiac surgery patients.

Introduction
Acute Kidney Injury (AKI) is a frequent and serious condition associated 
with morbidity and mortality.1,2 According to the Kidney Disease: 
Improving Global Outcomes (KDIGO) criteria, AKI is defined by an 
abrupt decline in renal function, detected by elevations in serum cre
atinine (sCr) and/or reductions in urine output (UO).3 Although this 
definition is well-established, AKI is often detected too late in the clin
ical course, limiting opportunities for effective intervention and contrib
uting to poor patient outcomes.4

Importantly, AKI usually arises as a secondary manifestation of sys
temic insults—such as haemodynamic instability, inflammation, sepsis, 
or hypoxia—that precede measurable renal dysfunction.5 These up
stream mechanisms alter cardiovascular and metabolic homeostasis 
and can generate detectable changes in systemic physiology and haemo
dynamics hours to days before renal parameters deteriorate.6,7 This 
observation highlights the potential of non-renal indicators to serve 
as early signatures of kidney risk, enabling clinicians to anticipate injury 
rather than react to its biochemical confirmation.

Efforts to improve early detection have included the development of 
novel urinary and plasma biomarkers capable of identifying subclinical 
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AKI.5,8 While promising, their use is constrained by assay cost, limited 
availability, and the need for intermittent sampling.9 In contrast, modern 
intensive care units already generate a continuous stream of haemo
dynamic and physiological data—from heart rate and blood pressure 
to ventilation and oxygenation parameters—that reflect the systemic 
stresses leading to renal injury. These routinely collected data offer a 
unique, low-cost substrate for predictive modelling.

Artificial intelligence (AI) and machine learning (ML) methods are 
particularly well-suited to capture the complex, non-linear interactions 
between systemic physiology and subsequent kidney injury.10 Yet most 
existing prediction tools remain anchored in traditional renal markers 
such as sCr and blood urea nitrogen (BUN), which inherently constrain 
their predictive horizon.11 By excluding delayed renal biomarkers and 
focusing solely on systemic haemodynamic and physiological para
meters, AI-based models may provide a longer lead time for AKI pre
diction, creating an actionable window for preventive interventions.12

Here, we demonstrate that AI models trained exclusively on system
ic haemodynamic and physiological data can accurately predict AKI and 
major adverse kidney events (MAKE) up to 70–100 h before diagnosis. 
Their performance was validated in general and burn ICU populations, 
showing that haemodynamic signatures alone carry sufficient informa
tion to anticipate kidney dysfunction and support earlier, actionable 
cardio-renal risk stratification.

Method
Study design
Data were collected from three distinct cohorts to ensure population 
heterogeneity: the MIMIC-IV database,13 the eICU Collaborative 
Research Database,14 and a French Burn ICU cohort (APHP-burn). 
The MIMIC-IV database is a publicly available single-centre ICU dataset 
from an academic medical centre in the USA. The eICU Collaborative 
Research Database comprises multicentre ICU data from a diverse net
work of US hospitals, enhancing generalizability. The APHP-burn co
hort originates from the POOF (Perio-Operative Organ Failure) 
study conducted at Saint-Louis Hospital (AP-HP, Paris), representing 
a high-acuity, domain-specific population of critically ill burn patients.

Inclusion
Patients were eligible for inclusion if they met the following criteria: age 
≥18 years and an ICU stay of more than 24 h. Patients who were re
admitted to the ICU during the study period were also included. 
Nevertheless, patients with chronic kidney disease (CKD) or with 
AKI before the first 24 h following admission were not included.

Ethical approval
This study adhered to the principles of the Declaration of Helsinki. All da
tasets were fully de-identified prior to analysis and classified as non- 
human subject research; therefore, IRB approval and informed consent 
were not required. The MIMIC-IV database was approved by the 
Massachusetts Institute of Technology (IRB No. 0403000206) and the 
Beth Israel Deaconess Medical Center (Protocol No. 2001-P-001699/ 
14).13 For the eICU Collaborative Research Database, IRB approval 
was waived due to its retrospective nature and HIPAA-compliant 
de-identification certified by Privacert (Certification No. 1031219-2).14

The APHP-burn cohort was approved by the Ethics Committee of the 
Société Française d’Anesthésie et de Réanimation (CERAR, SFAR; IRB 
00010254-2025-091).

Definition of acute kidney injury
AKI was defined according to the KDIGO criteria.3 For patients with an 
estimated glomerular filtration rate (eGFR) < 75 mL/min/1.73 m² at ICU 

admission (calculated using the CKD-EPI equation), baseline sCr was back- 
estimated using the MDRD formula, assuming a reference eGFR of 75 mL/ 
min/1.73 m². For outcome analysis, AKI was classified based on the com
ponent of the KDIGO definition: AKI detected by sCr variation (AKI-sCr) 
and AKI detected by urine output (AKI-UO). Unless stated otherwise, the 
term AKI refers to the occurrence of either or both components.

Definition of major adverse kidney events
The MAKE at ICU discharge was defined as a composite outcome in
cluding: (1) ICU mortality, (2) need for renal replacement therapy 
(RRT), and (3) non-recovery of kidney function, defined as a sCr at dis
charge ≥150% of baseline sCr. MAKE was assessed only in patients with 
an ICU length of stay >7 days, to ensure sufficient time for renal out
come evaluation.

Prediction task and input features
The occurrence of AKI was modelled as a binary classification task, with 
patients labelled positive if they developed AKI during their ICU stay and 
negative otherwise. The model produced hourly updated risk scores re
presenting the probability of AKI onset throughout the ICU stay.

Input features included routinely collected clinical, physiological, bio
chemical, and treatment-related variables. Feature selection was based 
on impurity-based importance, where variables were iteratively ranked 
according to their contribution to reducing classification uncertainty. A 
minimal, clinically relevant set of features was selected by optimizing the 
area under the receiver operating characteristic curve (auROC).

For characteristic tables, in the eICU cohort, comorbidities were ex
tracted from ICD-9 diagnostic codes available prior to ICU admission. 
The detailed ICD-9 lists used for comorbidity identification in both 
eICU and MIMIC-IV datasets are now provided in the Supplementary 
material online, Table S1. Notably, comorbidity variables were not 
used as model inputs, which relied solely on physiological, haemo
dynamic, and biochemical data.

Data preprocessing
Comprehensive preprocessing was performed to ensure data quality 
and model reliability. Input variables were standardized using Z-score 
normalization.

Missing values were not imputed manually, as the XGBoost algo
rithm natively handles missing data by learning optimal split directions 
during training. This approach avoids introducing bias and preserves 
the structure of clinical variability. Outlier handling was performed using 
predefined physiological ranges established in collaboration with med
ical experts; values outside these clinically plausible limits were excluded 
to ensure data quality and consistency.

Model development and validation
Before model training, selected physiological and biochemical variables 
were transformed using proprietary mathematical functions developed 
by Precisia Care SA. These transformations were designed to enhance 
the model’s ability to capture non-linear interactions and temporal dy
namics between systemic parameters. Although the exact functions 
cannot be disclosed for intellectual-property reasons, all transforma
tions were applied uniformly across datasets to ensure methodological 
consistency and preserve clinical interpretability of the resulting fea
tures. In this line, detailed disclosure of internal transformations and 
SHAP analyses cannot be fully detailed. To ensure transparency, we re
port impurity-based feature importance, highlighting the key haemo
dynamic and physiological variables driving AKI prediction.

Hyperparameter tuning was conducted using a Bayesian optimiza
tion approach coupled with 4-fold cross-validation. During each iter
ation, three folds were used for training and one for validation. The 
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search space included learning rate, maximum tree depth, number of 
estimators, and subsampling parameters. The combination achieving 
the highest mean area under the ROC curve across folds was selected 
for the final model to maximize robustness and prevent overfitting.

The model was developed using the MIMIC-IV dataset. A total of 5028 
patients were randomly selected, with data split into training (60%) and 
validation (20%) sets. The model generated hourly AKI risk scores during 
the ICU stay. Performance metrics included auROC, sensitivity (Se), spe
cificity (Sp), and positive and negative likelihood ratios. Two versions of 
the model were evaluated: one including sCr and BUN (sCr+/BUN+), 
and one excluding them (sCr−/BUN−). A prediction was classified as 
positive if it exceeded the threshold maximizing the Youden index (sen
sitivity + specificity − 1). Model architecture and workflow are illustrated 
in Supplementary material online, Figure S1.

Outcomes
The primary outcome was the prediction of AKI. To ensure the avail
ability of a minimal set of patient data following admission, prediction 
performance was specifically assessed in subpopulations of patients 
who developed AKI within 24, 48, or 72 h after admission.

Secondary outcomes included the prediction of MAKE at ICU dis
charge, AKI-sCr, AKI-UO, and the time interval between model predic
tion and AKI onset. These outcomes are detailed in Supplementary 
material online, Figure S2.

Statistical analysis
Continuous variables were summarized as medians with interquartile 
ranges (IQR), and categorical variables were reported as absolute 
counts and percentages. The model’s predictive performance was as
sessed by calculating the auROC and determining Se, Sp, and likelihood 
ratios. These metrics were used to evaluate the ability of the ML algo
rithm to predict AKI accurately and reliably in ICU patients. Statistical 
analyses and model development were performed using Python (ver
sion 3.9), leveraging libraries such as scikit-learn, pandas, and numpy 
for data processing, ML, and evaluation metrics.

Results
Datasets, models, and features
Two models were developed: one including renal biomarkers 
(sCr+/BUN+) and one excluding them (sCr−/BUN−). In both settings, 
the most influential predictors were systemic physiological and haemo
dynamic parameters rather than renal biomarkers. In the sCr+/BUN+ 
model, although sCr and BUN were among the top-ranked variables, 
heart rate, respiratory rate, oxygen saturation, mean arterial pressure 
(MAP), systolic (SAP), and diastolic arterial pressure (DAP), Glasgow 
Coma Scale, and inspired oxygen fraction also emerged as key drivers. 
Strikingly, in the sCr−/BUN− model, the leading predictors remained 
exclusively haemodynamic and physiological variables—MAP, SAP, 
DAP, heart rate, respiratory rate, oxygen saturation—complemented 
by systemic markers such as total bilirubin, bicarbonate, inspired oxy
gen fraction, and troponin. Feature importance rankings (see 
Supplementary material online, Figure S3) highlight that haemodynamic 
signatures consistently dominated model performance, underscoring 
their central role as early indicators of AKI risk.

Within each dataset, three cohorts were defined based on the timing 
of AKI onset (no AKI within the first 24, 48, or 72 h after ICU admis
sion). The study flow and cohort definition are illustrated in 
Supplementary material online, Figure S4. Baseline characteristics, in
cluding demographics, admission diagnoses, severity scores, and ICU 
outcomes, are summarized in Table 1 for each dataset.

Acute kidney injury prediction 
performance with model sCr+/BUN+
In all cohorts, prediction accuracy improved with longer horizons. 
Importantly, while sCr and BUN contributed when included, systemic 
haemodynamic and physiological features already enabled robust 
prediction in the absence of renal biomarkers. In MIMIC-IV, the 
auROC increased from 0.84 (95%CI, 0.80–0.89) at 24 h to 0.85 
(5%CI, 0.80–0.90) at 72 h. The correlation between predicted risk 
and sCr was: 0.45 at 24 h (P < 0.001), 0.44 at 48 h (P < 0.001), and 
0.43 at 72 h (P < 0.001).

In eICU, auROC rose from 0.64 (95%CI, 0.64–0.65) at 24 h to 0.72 
(95%CI, 0.71–0.73) at 72 h, with stable correlations to sCr: 0.26 at 24 h 
(P < 0.001) and 48 h (P < 0.001), and 0.25 at 72 h (P < 0.001).

In the APHP-burn cohort, auROC increased from 0.75 (95%CI, 
0.72–0.78) to 0.79 (95%CI, 0.75–0.82) between 24 and 72 h. 
Correlation with sCr was 0.27 at 24 h (P < 0.001) to 0.16 at 72 h 
(P < 0.001).

Additional metrics and visualizations are presented in Table 2 and 
Supplementary material online, Figures S5 and S6.

Acute kidney injury prediction 
performance of model sCr−/BUN−
In the MIMIC-IV cohort, the sCr−/BUN− model yielded auROCs of 
0.74 (95%CI, 0.68–0.79), 0.75 (95%CI, 0.69–0.80), and 0.78 (95%CI, 
0.71–0.85) at 24, 48, and 72 h, respectively. These were significantly 
lower than those of the sCr+/BUN+ model at all time points (P <  
0.001, P < 0.001, and P = 0.001), with NRIs favouring the sCr+/BUN+ 
model: 0.22 (95%CI, 0.12–0.32; P < 0.001), 0.19 (95%CI, 0.09–0.29; 
P < 0.001), and 0.14 (95%CI, 0.01–0.27; P = 0.03). In the eICU cohort, 
auROCs for the sCr−/BUN− model were 0.63 (95%CI, 0.62–0.63), 
0.70 (95%CI, 0.70–0.71), and 0.73 (95%CI, 0.72–0.74) at 24, 48, and 
72 h, respectively. At 24 h, the sCr+/BUN+ model performed signifi
cantly better [P < 0.001; NRI = 0.02 (95%CI, 0.01–0.03); P < 0.001]. 
However, at 48 and 72 h, performance significantly favoured the sCr 
−/BUN− model (P < 0.001 and P = 0.001), with negative NRIs of 
−0.02 (95%CI, −0.03 to −0.01; P = 0.003) and −0.02 (95%CI, −0.03 
to −0.001; P = 0.03), respectively. In the APHP-burn cohort, the sCr 
−/BUN− model achieved auROCs of 0.75 (95%CI, 0.72–0.78), 0.78 
(95%CI, 0.75–0.81), and 0.77 (95%CI, 0.71–0.73) at 24, 48, and 72 h. 
Notably, in this high-stress environment, adding sCr and BUN did 
not yield any performance benefit, underscoring the sufficiency of sys
temic signatures under extreme physiological stress (Figure 1 and 
Supplementary material online, Table S2).

All additional performance metrics are provided in Table 2 and 
Supplementary material online, Figures S5 and S6.

Renal prognosis prediction performance
MAKE prediction was limited to patients with an ICU stay >7 days and a 
prediction window ≥4 days before event onset to ensure prognostic 
relevance. In the MIMIC-IV cohort (n = 104; 17.3% with MAKE), predic
tion performance was comparable between models: auROC 0.73 (95% 
CI, 0.61–0.84) for the sCr+/BUN+ model vs. 0.77 (95%CI, 0.65–0.89) 
for the sCr−/BUN− model (P = ns). No significant reclassification im
provement was observed [NRI = −0.05 (95%CI, −0.18 to 0.07); P =  
0.41]. In the eICU cohort (n = 13 536; 23.6% with MAKE), the 
sCr+/BUN+ model significantly outperformed the sCr−/BUN− model 
[auROC 0.76 (95%CI, 0.75–0.77) vs. 0.67 (95%CI, 0.65–0.68); P <  
0.001], with improved reclassification [NRI = 0.15 (95%CI, 0.13– 
0.17); P < 0.001]. In the APHP-burn cohort, 72 patients (5.8%) experi
enced MAKE. Both models had similar discrimination [auROC 0.88 
(95%CI, 0.84–0.92) vs. 0.87 (95%CI, 0.83–0.90); P = 0.176], but reclas
sification significantly favoured the sCr+/BUN+ model [NRI = 0.07 
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(95%CI, 0.004–0.14); P = 0.037], suggesting that systemic physiology 
carries prognostic value beyond short-term AKI prediction (Figure 2; 
Table 2; Supplementary material online, Table S2).

Models prediction according to KDIGO 
physiological parameter
In the MIMIC-IV cohort, both models achieved their highest perform
ance for AKI-UO, with the sCr+/BUN+ model significantly outper
forming the sCr−/BUN− model [auROC 0.91 (95%CI, 0.88–0.94) vs. 
0.83 (95%CI, 0.79–0.87) at 24 h; P < 0.001, and 0.91 (95%CI, 0.88– 

0.94) vs. 0.83 (95%CI, 0.78–0.88) at 72 h; P = 0.001]. In the eICU co
hort, the best discrimination was for AKI-sCr using the sCr+/BUN+ 
model, with auROC increasing from 0.64 [95%CI, 0.63–0.64] at 24 h 
to 0.77 [95%CI, 0.76–0.77] at 72 h. In the APHP-burn cohort, both 
models performed well for AKI-sCr: AUROCs for sCr+/BUN+ rose 
from 0.85 [95%CI, 0.82–0.88] to 0.88 [95%CI, 0.85–0.91], and for 
sCr−/BUN− from 0.86 [95%CI, 0.83–0.88] to 0.87 [95%CI, 0.84– 
0.90]. For AKI-UO, predictive performance was lower and similar be
tween models across all time points (see Supplementary material 
online, Figures S7–S9; Supplementary material online, Tables S3 and 
S4). These findings suggest that haemodynamic signatures are 
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Table 1 Patients characteristics in cohorts

Variable APHP-burn 
(n = 1626)

eICU 
(n = 120 303)

MIMIC IV 
(n = 960)

General
Age, years, median, [IQR] 50.6 [34.4, 64.9] 65.0 [53.0–76.0] 60.0 [48.0–72.0]

Sex, male, n (%) 965 (59.3%) 65 066 (54.1%) 488 (50.8%)

IMC, median, [IQR] 24.8 [22.2, 28.7] 27.5 [23.5–32.9] 27.3 [26.5–35.5]
Comorbidities

Charlson score, median, [IQR] 1.0 [0.0, 3.0] 3.0 [2.0–5.0] 4.0 [2.0–6.0]

Cardiovascular comorbidities [n (%)] 400 (24.6%) 45 961 (38.2%) 336 (35.0%)
Neurologic comorbidities [n (%)] 39 (2.4%) 11 913 (9.9%) 214 (22.3%)

Admission
Sepsis [n (%)] NC 16 709 (13.9%) NC
Trauma [n (%)] NC 4751 (3.9%) NC

Other
Heart rate (beats/minute) 90.5 [78.0, 104.0] 87.0 [74.0–103.0] 87.0 [75.0–103.0]
MAP (mmHg) 84.0 [74.0, 97.0] 83.0 [71.0–96.0] 84.0 [73.0–97.0]

Respiratory rate (beats/minute) 19.0 [15.0–23.0] 19.0 [16.0–23.0] 18.0 [15.0–22.0]

Body temperature (C) 36.9 [36.4–37.4] 36.7 [36.4–37.1] 36.8 [36.5–37.2]
SpO2 (%) 98.0 [96.0–100.0] 98.0 [96.0–100.0] 97.0 [94.5–98.0]

Haemoglobin (g/dL) 13.1 [11.2–14.9] 11.0 [9.3–12.6] 10.2 [8.8–11.6]

Platelets (K/µL) 255.0 [192.5–334.5] 192.0 [142.0–251.0] 205.0 [151.0–269.2]
WBC (K/µL) 11.2 [8.3–16.0] 10.7 [7.7–14.8] 10.4 [7.5–14.5]

BUN (mg/dL) 4.8 [3.6–6.4] 19.0 [13.0–31.0] 14.0 [10.0–20.0]

Serum creatinine (mg/dL) 0.8 [0.6–1.0] 1.0 [0.7–1.4] 0.7 [0.6–0.9]
Serum glucose (mg/dL) 115.3 [99.1–147.7] 128.0 [104.0–167.0] 123.0 [103.0–151.0]

Serum chloride (mEq/L) 102.0 [99.0–105.0] 105.0 [101.0–108.0] 105.0 [101.0–108.0]

Bicarbonate (mmol/L) 22.0 [20.0–24.0] 24.0 [21.0–27.0] 23.0 [21.0–26.0]
Serum potassium (mEq/L) 4.0 [3.7–4.3] 4.0 [3.7–4.4] 4.0 [3.7–4.4]

Serum sodium (mEq/L) 138.0 [136.0–140.6] 139.0 [136.0–141.0] 139.0 [136.0–141.0]

eGFR (mL/min/1.73 m2) 104.6 [85.6–119.3] 76.9 [45.6–99.5] 97.3 [79.4–110.5]
Severity score

IGSII 18.0 [11.0, 29.2] 52.0 [43.0–61.0] 29.0 [22.0–37.0]

SOFA 4.0 [1.0, 5.0] 5.0 [0.0–9.0] 3.0 [2.0–5.0]
Outcomes

Length of stay (hours) 351.5 [171.3, 731.1] 57.0 [39.0–98.0] 177.6 [140.0–257.1]

Mortality [n (%)] 247 (15.2%) 10 738 (8.9%) 34 (3.5%)
Renal replacement therapy [n (%)] 89 (5.5%) 5231 (4.3%) 7 (0.7%)

Vasopressors therapy [n (%)] 292 (18.0%) 17 069 (14.2%) 241 (25.1%)

AKI after 24 h 642 (39.5%) 18 610 (15.4%) 93 (9.7%)
AKI after 48 h 387 (23.8%) 6290 (5.2%) 84 (8.8%)

AKI after 72 h 257 (15.8%) 3210 (2.7%) 44 (4.7%)

MAKE 72 (4.4%) 3190 (2.6%) 19 (2.0%)
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particularly informative for creatinine-defined AKI in high-stress con
texts, but less sensitive for urine-output–driven definitions.

Timing of models for prediction
The time interval between model prediction and actual onset of AKI was 
assessed across the different time-point cohorts (24, 48, 72 h). Across 
all datasets, both models anticipated AKI well in advance, with median 
lead times exceeding 70 h. Importantly, the model using haemodynamic 
and physiological parameters alone (without renal biomarkers) main
tained similar or even longer lead times compared with the biomarker- 
based model, reinforcing its clinical utility as an early warning tool.

In the MIMIC-IV cohort, the lead time from prediction to AKI onset 
increased with earlier prediction windows. Notably, the sCr−/BUN− 
model demonstrated longer lead time with a median time in hours 
of 45 [IQR: 25–74] (24 h) to 71 [IQR: 53–111] (72 h) compared to 
the sCr+/BUN+ model with a median time of 36 [IQR: 26–64] 
(24 h) to 67 [IQR: 52–117] (72 h) (Figure 3, Supplementary material 
online, Table S5).

In the eICU cohort, median time increased from 15 h [IQR: 7–35] 
(24 h) to 78 h [IQR: 55–126] (72 h) for the sCr+/BUN+ model, and 

from 15 h [IQR: 7–37] (24 h) to 78 h [IQR: 56–127] (72 h) for the 
sCr−/BUN− model. No significant differences in lead times were ob
served between the two models at any prediction timepoint 
(Figure 3, Supplementary material online, Table S5).

In the APHP-burn study at the 24-h prediction timepoint, the me
dian lead time was 31 h [IQR: 12–87] for the sCr+/BUN+ model and 
31.81 h [IQR: 13–79] for the sCr−/BUN− model. At the 72 h predic
tion timepoint, the lead time increased to 105 h [IQR: 57–181] and 
105 h [IQR: 59–171], respectively (Figure 3, Supplementary material 
online, Table S5).

To evaluate prediction performance over time before AKI onset, a 
sensitivity analysis was conducted at 12, 24, and 36 h prior to diagnosis. 
In the MIMIC-IV cohort, auROCs decreased slightly with increasing pre
diction horizon: from 0.84 (95%CI, 0.78–0.89) to 0.82 (95%CI, 0.75– 
0.88) for the sCr+/BUN+ model, and from 0.77 (95%CI, 0.69–0.83) 
to 0.74 (95%CI, 0.67–0.81) for the sCr−/BUN− model. In the eICU co
hort, performance also declined: sCr+/BUN+ auROC dropped from 
0.71 (95%CI, 0.70–0.72) to 0.68 (95%CI, 0.67–0.69), and sCr−/BUN 
− from 0.72 (95%CI, 0.71–0.73) to 0.70 (95%CI, 0.69–0.71). In the 
APHP-burn cohort, the sCr+/BUN+ model decreased from 0.78 
(95%CI, 0.74–0.81) to 0.75 (95%CI, 0.71–0.79), and the sCr−/BUN− 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Predictive performance value and performance parameters value according to cohorts and models

auROC 95%CI Sensitivity Specificity PPV NPV Accuracy

Models with sCr and BUN
MIMIC IV

24 h 0.842 [0.8, 0.885] 0.806 0.775 0.288 0.973 0.778
48 h 0.838 [0.79, 0.881] 0.81 0.775 0.269 0.975 0.778

72 h 0.85 [0.795, 0.9] 0.818 0.775 0.163 0.988 0.777

MAKE 0.728 [0.607, 0.841] 0.579 0.8 0.393 0.895 0.76
eICU cohort

24 h 0.641 [0.636, 0.645] 0.576 0.626 0.369 0.795 0.612

48 h 0.687 [0.68, 0.693] 0.713 0.554 0.17 0.938 0.572
72 h 0.719 [0.71, 0.727] 0.699 0.623 0.108 0.969 0.627

MAKE 0.758 [0.749, 0.767] 0.734 0.655 0.396 0.889 0.674

APH-burn cohort
24 h 0.753 [0.721, 0.781] 0.611 0.787 0.794 0.601 0.686

48 h 0.79 [0.76, 0.818] 0.661 0.781 0.715 0.742 0.731

72 h 0.79 [0.753, 0.823] 0.642 0.808 0.642 0.808 0.75
MAKE 0.879 [0.838, 0.918] 0.792 0.834 0.228 0.985 0.832

Models without sCr and BUN
MIMIC IV

24 h 0.737 [0.68, 0.79] 0,57 0.787 0.232 0.942 0.765

48 h 0.752 [0.691, 0.803] 0.607 0.787 0.226 0.951 0.77

72 h 0.781 [0.706, 0.846] 0.705 0.784 0.13 0.979 0.746

MAKE 0.767 [0.648, 0.885] 0.632 0.8 0.414 0.907 0.769

eICU cohort

24 h 0.627 [0.622, 0.632] 0.649 0.53 0.344 0.799 0.563
48 h 0.699 [0.692, 0.706] 0.643 0.642 0.187 0.933 0.642

72 h 0.731 [0.722, 0.739] 0.69 0.648 0.114 0.97 0.651

MAKE 0.665 [0.654, 0.676] 0.632 0.609 0.333 0.843 0.615
APH-burn cohort

24 h 0.751 [0.72, 0.779] 0.556 0.835 0.819 0.584 0.675

48 h 0.778 [0.746, 0.807] 0.607 0.835 0.748 0.725 0.733
72 h 0.769 [0.73, 0.805] 0.704 0.72 0.575 0.819 0.715

MAKE 0.866 [0.825, 0.904] 0.792 0.762 0.171 0.983 0.764
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Figure 1 Prediction performance according to cohorts and dataset using sCr+/BUN+ and sCr−/BUN− model. auROC, area under the curve of the 
receiver operating curve; AKI, acute kidney injury. Tests were assessed for sCr+/BUN+ vs. sCr−/BUN−: ns, non-significant. * = P-value <0.001.
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Figure 2 Prediction performance of models for MAKE. MAKE, major adverse kidney event.
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Figure 3 Duration between high prediction probability of AKI and onset of AKI.
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model from 0.76 (95%CI, 0.72–0.80) to 0.75 (95%CI, 0.70–0.79) (see 
Supplementary material online, Figure S10; Supplementary material 
online, Table S6).

Discussion
This multicentre external validation study demonstrates that the ML 
models developed in this work could accurately predict AKI and 
MAKE across diverse ICU populations—even in the absence of sCr 
and BUN as input features. Our findings show that systemic haemo
dynamic and physiological signatures alone carry sufficient information 
to anticipate kidney injury, achieving predictive performance compar
able to models including sCr and BUN. Remarkably, the sCr−/BUN− 
model maintained good performance even when predicting AKI 
defined by sCr criteria. Moreover, median lead times exceeded 70 h, 
providing a clinically actionable window to intervene well before con
ventional renal biomarkers signal injury.

These results support a paradigm shift: reliable AKI prediction 
can be achieved with renal-independent, continuously available 
bedside data. Haemodynamic-driven models thus offer a practical 
and scalable solution for early kidney risk stratification, particularly 
relevant in critical care settings where continuous monitoring is 
standard. This promotes a new non-invasive method to manage 
AKI and its prognosis.

The term ‘haemodynamic signature’ refers to the multivariate and 
time-dependent combinations of cardiovascular and respiratory para
meters that precede AKI onset. Rather than detecting isolated abnor
malities such as hypotension or tachycardia, the model captures 
complex patterns—sustained elevations in heart rate relative to 
mean arterial pressure, progressive loss of blood pressure variability, 
concurrent increases in respiratory rate and oxygen extraction, or sub
tle acid–base shifts—that collectively signal early systemic stress and 
microcirculatory compromise. These non-linear interactions, continu
ously integrated by the model, likely represent the transition from com
pensated to decompensated physiology preceding overt renal 
dysfunction. The dominance of MAP, heart rate, and respiratory rate 
among top importance features thus reflects physiologically interpret
able, clinically plausible dynamics rather than opaque model behaviour.

Despite substantial differences in patient characteristics and AKI in
cidence across the APHP-burn, eICU, and MIMIC-IV cohorts, the pre
dictive performance of the models remained robust.15,16 This highlights 
the generalizability and transferability of our approach across diverse 
ICU populations.

Several AI-based models have been developed for AKI prediction, 
but most of these approaches rely heavily on renal biomarkers such 
as sCr, urine output, or laboratory-specific data, and are generally de
signed for static risk assessment at admission rather than real-time 
physiological monitoring. In contrast, our model focuses exclusively 
on systemic haemodynamic and physiological variables, enabling 
biomarker-independent early prediction and continuous risk updating. 
Despite this difference in design, its discrimination (auROC ≈ 0.75– 
0.85 across cohorts) compares favourably with previously reported ex
ternally validated models, which typically range between 0.80 and 
0.82.11,17 This performance, combined with a median predictive lead 
time exceeding 70 h, highlights that systemic signatures alone provide 
sufficient information for actionable, early kidney-risk stratification.

Interestingly, model performance was highest in the MIMIC-IV co
hort, likely reflecting that the algorithm was primarily trained on this da
taset and was fitted to MIMIC IV characteristic population.18 In 
contrast, the APHP-burn and eICU cohorts provided critical insights 
into performance in more heterogeneous and real-world ICU settings, 
including burn patients and a multicentre ICU population, respectively. 
The burn ICU cohort is especially important: in this extreme stress 

setting, inclusion of sCr and BUN conferred no benefit, underscoring 
the robustness of systemic physiological signatures as early warning 
signals. In burn patients, the superior performance of non-renal para
meters likely reflects the distinct pathophysiology of burn-associated 
AKI. Severe burns trigger a systemic inflammatory and hypermeta
bolic response characterized by massive capillary leak, hypovolemia, 
and catecholamine-driven vasoplegia, which profoundly alter car
diovascular and microcirculatory homeostasis before renal injury 
becomes biochemically apparent. These perturbations manifest 
as measurable changes in heart rate, arterial pressure, oxygen
ation, and acid–base balance—features continuously captured by 
haemodynamic monitoring. In contrast, sCr and BUN are unreli
able early indicators in this setting, as they are affected by fluid re
suscitation, muscle catabolism, sepsis (resulting in a decrease in 
sCr production)19 and non-steady-state kinetics. Hence, haemo
dynamic and physiological data more directly represent the early 
systemic drivers of renal dysfunction in burns, explaining the compar
able or even superior predictive accuracy of biomarker-independent 
models in this cohort.

One of the main strengths of this study is the demonstration that re
liable AKI prediction is feasible without relying on sCr or BUN biomar
kers that define AKI but may not always accurately capture early kidney 
injury. The superior late-stage prediction observed in eICU with the 
sCr−/BUN− model, and the equivalent performance in burns, both 
highlight that systemic haemodynamics, respiratory signals, and basic 
biochemical variables are early markers of cardio-renal stress, preced
ing overt dysfunction captured by delayed renal biomarkers.

Prediction of MAKE was also effective, reinforcing the potential role 
of non-renal features in prognostic modelling. Notably, lead times from 
prediction to AKI onset were substantial—often exceeding 72 h— 
indicating a clinically meaningful window for preventive intervention.20

Although model performance declined modestly when extending the 
prediction horizon, early warnings remained feasible, suggesting prac
tical utility for real-time monitoring. The definition of MAKE at ICU 
discharge and limited to patients with a length of stay exceeding 7 
days was chosen to ensure sufficient follow-up for assessing long-term 
renal recovery and RRT use. However, this approach may introduce 
survivorship bias, excluding patients with early mortality or short ICU 
stays, and variable follow-up bias, since the observation period differs 
across patients. This limitation reflects the constraints of retrospective 
datasets without standardized post-discharge follow-up. To mitigate 
this, a sensitivity analysis using a fixed 28-day mortality including all 
admitted patient endpoint confirmed consistent model performance, 
suggesting that these potential biases did not materially affect our con
clusions (see Supplementary material online, Figure S11).

Model performance in the external validation cohort was highest 
for AKI-sCr, which is expected given the reliance on sCr in both 
AKI definitions and model training. However, the ability of the sCr−/ 
BUN− model to achieve strong predictive accuracy for creatinine- 
defined endpoints—without using creatinine itself—confirms the 
robustness of systemic haemodynamic signatures as anticipatory 
markers of kidney dysfunction.

Despite the major above-mentioned advances our study has some 
limitations. First, its retrospective design may introduce biases related 
to data quality, missingness, and unmeasured confounders. Second, 
variation in data frequency, measurement practices, and clinical docu
mentation across datasets may have influenced model performance 
and comparability. XGBoost was chosen for its strong performance 
on structured clinical data, robustness across heterogeneous ICU po
pulations, and ability to provide interpretable feature importance. 
Compared with other algorithms previously tested (not published) (lo
gistic regression, SVM, random forest), it consistently achieved higher 
accuracy and stability. Its balance between predictive performance, 
computational efficiency, and explainability justified its use in this study. 
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While full SHAP cannot be fully shared for intellectual-property 
reasons, representative feature importance plots are provided in 
the supplementary material. These confirm that the model’s predic
tions are primarily driven by physiologically meaningful variables 
such as mean arterial pressure, heart rate, oxygen saturation, and 
respiratory rate.

Finally, while the sCr−/BUN− model demonstrates promising results, 
clinical applicability remains to be established and will require prospective 
validation in real-time settings, ideally through integration into clinical 
decision-support systems for proactive cardio-renal management.

From a clinical perspective, a real-time alert generated by this model 
could serve as an early trigger to reassess kidney-protective strategies. 
When a patient is identified as high-risk, clinicians may verify and opti
mize haemodynamic stability—ensuring adequate perfusion pressure, 
reassessing fluid balance, and adjusting vasopressor support as needed. 
It should also prompt a careful review of ongoing or planned exposure 
to nephrotoxic agents and a reinforcement of renal monitoring through 
close follow-up of urine output and sCr trends. Importantly, such an 
alert may also guide the search for underlying complications, such as 
sepsis or bleeding, that could further compromise renal and overall 
prognosis. In selected cases, early multidisciplinary consultation with 
nephrology or critical care specialists may be warranted. These actions 
align with current KDIGO and ESICM recommendations and illustrate 
how physiology-based predictive tools can translate into actionable, 
preventive bedside interventions.4

The clinical translation of this work will follow a progressive pathway, 
starting with prospective validation of the model in real-time ICU mon
itoring systems to confirm predictive accuracy and lead time in daily 
practice. Once validated, the algorithm could be integrated into bedside 
monitoring or electronic health records as an automated kidney risk 
alert, displaying dynamic risk trends to support early preventive actions. 
A subsequent interventional trial will be required to evaluate whether 
early alerts effectively reduce AKI incidence and improve renal out
comes. From a regulatory perspective, the model would qualify as med
ical device software and would require certification, with specific 
attention to explainability, auditability, and data protection.

Although several studies have already evaluated similar AI-based alert 
systems for AKI prediction,21,22 the overall level of evidence supporting 
a tangible clinical benefit from such implementations remains limited. 
The key differentiating feature of the present approach lies in its early 
detection capability (72 h) compared to existing study, which may pro
vide a broader actionable window for intervention and renal protection 
before overt injury occurs.

Conclusion
This study demonstrates the feasibility of predicting AKI and renal 
prognosis without relying on traditional renal biomarkers, using 
primarily systemic physiological and haemodynamic parameters. 
Haemodynamic-driven AI models achieved early and robust perform
ance across heterogeneous ICU populations, including burn patients, 
underscoring that systemic signatures alone carry sufficient information 
to anticipate kidney dysfunction. These findings represent a meaningful 
step towards real-time, accessible, and proactive cardio-renal risk mon
itoring tools in critical care settings.

Supplementary material
Supplementary material is available at European Heart Journal – Digital 
Health.
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