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Aims Acute kidney injury (AKI) is a frequent and severe complication in critically ill patients with cardiovascular instability. Current
risk scores rely on delayed renal biomarkers such as serum creatinine (sCr) and blood urea nitrogen (BUN). We aimed to
develop and validate machine learning (ML) models predicting AKI and major adverse kidney events (MAKE) exclusively from
systemic physiological and haemodynamic data.

Methods Two ML models were trained on the MIMIC-IV database: one including (sCr+/BUN+) and one excluding (sCr—/BUN-)

and results renal parameters. External validation was performed in the elCU database and in a cohort of burn ICU patients from
AP-HP. Model performance was assessed for early AKI and MAKE prediction up to 100 h before diagnosis. Systemic
haemodynamic and physiological variables were the strongest predictors of AKI. In MIMIC-IV, the sCr—/BUN— model
achieved auROC 0.78 at 72 h, approaching the sCr+/BUN+ model. In elCU, it outperformed the biomarker-based model
at later time points (auROC 0.73). In the burn ICU cohort—representing a high-stress systemic environment—it maintained
robust accuracy (auROC 0.75 at 24 h, 0.77 at 72 h). For MAKE prediction, the sCr—/BUN— model achieved auROC 0.87
(burn cohort), 0.67 (elCU), and 0.77 (MIMIC-IV). Median lead time for AKI prediction exceeded 70 h.

Conclusion Al models based solely on non-renal parameters can accurately predict AKI and MAKE, even under extreme systemic stress
such as severe burns. Haemodynamic signatures carry sufficient information to anticipate kidney dysfunction well in advance,
opening the way to real-time, proactive cardio-renal risk stratification in ICU patients with acute heart failure, cardiogenic
shock, and after cardiac surgery.

* Corresponding author. Tel: +33156093515, Email: louis.boutin@aphp.fr

© The Author(s) 2026. Published by Oxford University Press on behalf of the European Society of Cardiology.

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits
non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and
translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact
journals.permissions@oup.com.

920z Arenuer gz uo 3senb Aq 8/9G€%8/0G L1€1Z/1././o101ME/UPIYS/W0o"dNoolWapED.)/:SA]Y WOl PAPEOUMOQ


https://orcid.org/0000-0001-6711-4545
https://orcid.org/0000-0002-5879-6369
https://orcid.org/0000-0001-8715-7753
mailto:louis.boutin@aphp.fr
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1093/ehjdh/ztaf150

L. Boutin et al.

Graphical Abstract
With biological renal parameters Without biological renal parameters
MIMIC IV=> AKI sCR*/BUN sCR/BUN-
- Main input feature: Main input feature:
°~¢{°p sCR Heart rate  BUN Respiratory rate VS MAP  Heart rate Respiratory rate SpO2
I_._II SpO2 MAP SAP Neurological score SAP Total bilirubin HCO* DAP
FiO2 DAP FiO2 Troponin Hs
—
L —— )
Training = 60%
Validation = 20% l l
(n =5028) AKI after 72 hours
Internal validation
MIMIC IV auROC = 0.85 auROC =0.78
& 960 Detection before onset = 67 hours Detection before onset = 71 hours

External validation

elCU auROC = 0.72
& 120 303 Detection before onset = 77 hours
APHP-burn auROC =0.79
& 1626 Detection before onset = 105 hours

auROC =0.73
Detection before onset = 78 hours
auROC =0.77

Detection before onset = 105 hours

‘Decreasing’ indicates that the performance advantage of the biomarker-based (sCr+/BUN+) model diminished over time, whereas ‘Stable’ refers to com-
parable or superior performance of the haemodynamics-only (sCr—/BUN—) model in the external validation cohorts

Take Home Message
Al models based solely on systemic haemodynamic and physiologic-

al variables can anticipate AKI more than 70 h before diagnosis by
renal biomarkers. This performance is comparable to renal bio-
marker—based models, even under extreme stress conditions such
as severe burns. Haemodynamic signatures thus offer a complemen-
tary and earlier window for proactive cardio-renal risk management.

Clinical Perspective

What is new?

Machine learning models relying on systemic haemodynamic and
physiological parameters (without renal biomarkers) accurately
predict acute kidney injury (AKI) and major adverse kidney events
(MAKE). These models anticipate AKI up to 70—100 h before clinical
diagnosis, even in high-stress ICU settings such as severe burns.
Haemodynamic signatures act as early, reliable indicators of im-
pending renal dysfunction.

What are the clinical implications?
Traditional renal biomarkers (serum creatinine, BUN) remain im-
portant but are delayed indicators of injury. Haemodynamic moni-

toring, already standard in critically ill and cardiac patients, can be

leveraged by Al to provide earlier and actionable kidney risk predic-
tion. This complementary paradigm may enable earlier intervention
in cardio-renal syndromes, with relevance for acute heart failure,
cardiogenic shock, and post—cardiac surgery patients.

Introduction

Acute Kidney Injury (AKI) is a frequent and serious condition associated
with morbidity and mortality."* According to the Kidney Disease:
Improving Global Outcomes (KDIGO) criteria, AKl is defined by an
abrupt decline in renal function, detected by elevations in serum cre-
atinine (sCr) and/or reductions in urine output (UO).> Although this
definition is well-established, AKl is often detected too late in the clin-
ical course, limiting opportunities for effective intervention and contrib-
uting to poor patient outcomes.*

Importantly, AKI usually arises as a secondary manifestation of sys-
temic insults—such as haemodynamic instability, inflammation, sepsis,
or hypoxia—that precede measurable renal dysfunction.” These up-
stream mechanisms alter cardiovascular and metabolic homeostasis
and can generate detectable changes in systemic physiology and haemo-
dynamics hours to days before renal parameters deteriorate.*” This
observation highlights the potential of non-renal indicators to serve
as early signatures of kidney risk, enabling clinicians to anticipate injury
rather than react to its biochemical confirmation.

Efforts to improve early detection have included the development of
novel urinary and plasma biomarkers capable of identifying subclinical
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Prediction of AKI without renal parameters, an external validation

AK1>® While promising, their use is constrained by assay cost, limited
availability, and the need for intermittent sampling.” In contrast, modern
intensive care units already generate a continuous stream of haemo-
dynamic and physiological data—from heart rate and blood pressure
to ventilation and oxygenation parameters—that reflect the systemic
stresses leading to renal injury. These routinely collected data offer a
unique, low-cost substrate for predictive modelling.

Artificial intelligence (Al) and machine learning (ML) methods are
particularly well-suited to capture the complex, non-linear interactions
between systemic physiology and subsequent kidney injur‘y.10 Yet most
existing prediction tools remain anchored in traditional renal markers
such as sCr and blood urea nitrogen (BUN), which inherently constrain
their predictive horizon."" By excluding delayed renal biomarkers and
focusing solely on systemic haemodynamic and physiological para-
meters, Al-based models may provide a longer lead time for AKI pre-
diction, creating an actionable window for preventive interventions.'?

Here, we demonstrate that Al models trained exclusively on system-
ic haemodynamic and physiological data can accurately predict AKI and
major adverse kidney events (MAKE) up to 70-100 h before diagnosis.
Their performance was validated in general and burn ICU populations,
showing that haemodynamic signatures alone carry sufficient informa-
tion to anticipate kidney dysfunction and support earlier, actionable
cardio-renal risk stratification.

Method
Study design

Data were collected from three distinct cohorts to ensure population
heterogeneity: the MIMIC-IV database,”® the elCU Collaborative
Research Database,™ and a French Burn ICU cohort (APHP-burn).
The MIMIC-IV database is a publicly available single-centre ICU dataset
from an academic medical centre in the USA. The elCU Collaborative
Research Database comprises multicentre ICU data from a diverse net-
work of US hospitals, enhancing generalizability. The APHP-burn co-
hort originates from the POOF (Perio-Operative Organ Failure)
study conducted at Saint-Louis Hospital (AP-HP, Paris), representing
a high-acuity, domain-specific population of critically ill burn patients.

Inclusion

Patients were eligible for inclusion if they met the following criteria: age
>18 years and an ICU stay of more than 24 h. Patients who were re-
admitted to the ICU during the study period were also included.
Nevertheless, patients with chronic kidney disease (CKD) or with
AKI before the first 24 h following admission were not included.

Ethical approval

This study adhered to the principles of the Declaration of Helsinki. All da-
tasets were fully de-identified prior to analysis and classified as non-
human subject research; therefore, IRB approval and informed consent
were not required. The MIMIC-IV database was approved by the
Massachusetts Institute of Technology (IRB No. 0403000206) and the
Beth Israel Deaconess Medical Center (Protocol No. 2001-P-001699/
14).13 For the elCU Collaborative Research Database, IRB approval
was waived due to its retrospective nature and HIPAA-compliant
de-identification certified by Privacert (Certification No. 1031219-2)."*
The APHP-burn cohort was approved by the Ethics Committee of the
Société Francaise d’Anesthésie et de Réanimation (CERAR, SFAR; IRB
00010254-2025-091).

Definition of acute kidney injury

AKI was defined according to the KDIGO criteria.® For patients with an
estimated glomerular filtration rate (eGFR) < 75 mL/min/1.73 m* at ICU

admission (calculated using the CKD-EPI equation), baseline sCr was back-
estimated using the MDRD formula, assuming a reference eGFR of 75 mL/
min/1.73 m”. For outcome analysis, AKI was classified based on the com-
ponent of the KDIGO definition: AKI detected by sCr variation (AKI-sCr)
and AKI detected by urine output (AKI-UO). Unless stated otherwise, the
term AKI refers to the occurrence of either or both components.

Definition of major adverse kidney events

The MAKE at ICU discharge was defined as a composite outcome in-
cluding: (1) ICU mortality, (2) need for renal replacement therapy
(RRT), and (3) non-recovery of kidney function, defined as a sCr at dis-
charge >150% of baseline sCr. MAKE was assessed only in patients with
an ICU length of stay >7 days, to ensure sufficient time for renal out-
come evaluation.

Prediction task and input features

The occurrence of AKI was modelled as a binary classification task, with
patients labelled positive if they developed AKI during their ICU stay and
negative otherwise. The model produced hourly updated risk scores re-
presenting the probability of AKI onset throughout the ICU stay.

Input features included routinely collected clinical, physiological, bio-
chemical, and treatment-related variables. Feature selection was based
on impurity-based importance, where variables were iteratively ranked
according to their contribution to reducing classification uncertainty. A
minimal, clinically relevant set of features was selected by optimizing the
area under the receiver operating characteristic curve (auROC).

For characteristic tables, in the elCU cohort, comorbidities were ex-
tracted from ICD-9 diagnostic codes available prior to ICU admission.
The detailed ICD-9 lists used for comorbidity identification in both
elCU and MIMIC-IV datasets are now provided in the Supplementary
material online, Table S1. Notably, comorbidity variables were not
used as model inputs, which relied solely on physiological, haemo-
dynamic, and biochemical data.

Data preprocessing

Comprehensive preprocessing was performed to ensure data quality
and model reliability. Input variables were standardized using Z-score
normalization.

Missing values were not imputed manually, as the XGBoost algo-
rithm natively handles missing data by learning optimal split directions
during training. This approach avoids introducing bias and preserves
the structure of clinical variability. Outlier handling was performed using
predefined physiological ranges established in collaboration with med-
ical experts; values outside these clinically plausible limits were excluded
to ensure data quality and consistency.

Model development and validation

Before model training, selected physiological and biochemical variables
were transformed using proprietary mathematical functions developed
by Precisia Care SA. These transformations were designed to enhance
the model’s ability to capture non-linear interactions and temporal dy-
namics between systemic parameters. Although the exact functions
cannot be disclosed for intellectual-property reasons, all transforma-
tions were applied uniformly across datasets to ensure methodological
consistency and preserve clinical interpretability of the resulting fea-
tures. In this line, detailed disclosure of internal transformations and
SHAP analyses cannot be fully detailed. To ensure transparency, we re-
port impurity-based feature importance, highlighting the key haemo-
dynamic and physiological variables driving AKI prediction.
Hyperparameter tuning was conducted using a Bayesian optimiza-
tion approach coupled with 4-fold cross-validation. During each iter-
ation, three folds were used for training and one for validation. The
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search space included learning rate, maximum tree depth, number of
estimators, and subsampling parameters. The combination achieving
the highest mean area under the ROC curve across folds was selected
for the final model to maximize robustness and prevent overfitting.

The model was developed using the MIMIC-IV dataset. A total of 5028
patients were randomly selected, with data split into training (60%) and
validation (20%) sets. The model generated hourly AKI risk scores during
the ICU stay. Performance metrics included auROC, sensitivity (Se), spe-
cificity (Sp), and positive and negative likelihood ratios. Two versions of
the model were evaluated: one including sCr and BUN (sCr+/BUN+),
and one excluding them (sCr—/BUN-). A prediction was classified as
positive if it exceeded the threshold maximizing the Youden index (sen-
sitivity + specificity — 1). Model architecture and workflow are illustrated
in Supplementary material online, Figure S1.

Outcomes

The primary outcome was the prediction of AKI. To ensure the avail-
ability of a minimal set of patient data following admission, prediction
performance was specifically assessed in subpopulations of patients
who developed AKI within 24, 48, or 72 h after admission.

Secondary outcomes included the prediction of MAKE at ICU dis-
charge, AKI-sCr, AKI-UQO, and the time interval between model predic-
tion and AKI onset. These outcomes are detailed in Supplementary
material online, Figure S2.

Statistical analysis

Continuous variables were summarized as medians with interquartile
ranges (IQR), and categorical variables were reported as absolute
counts and percentages. The model’s predictive performance was as-
sessed by calculating the auROC and determining Se, Sp, and likelihood
ratios. These metrics were used to evaluate the ability of the ML algo-
rithm to predict AKI accurately and reliably in ICU patients. Statistical
analyses and model development were performed using Python (ver-
sion 3.9), leveraging libraries such as scikit-learn, pandas, and numpy
for data processing, ML, and evaluation metrics.

Results

Datasets, models, and features

Two models were developed: one including renal biomarkers
(sCr+/BUN+) and one excluding them (sCr—/BUN-). In both settings,
the most influential predictors were systemic physiological and haemo-
dynamic parameters rather than renal biomarkers. In the sCr+/BUN+
model, although sCr and BUN were among the top-ranked variables,
heart rate, respiratory rate, oxygen saturation, mean arterial pressure
(MAP), systolic (SAP), and diastolic arterial pressure (DAP), Glasgow
Coma Scale, and inspired oxygen fraction also emerged as key drivers.
Strikingly, in the sCr—/BUN— model, the leading predictors remained
exclusively haemodynamic and physiological variables—MAP, SAP,
DAP, heart rate, respiratory rate, oxygen saturation—complemented
by systemic markers such as total bilirubin, bicarbonate, inspired oxy-
gen fraction, and troponin. Feature importance rankings (see
Supplementary material online, Figure $3) highlight that haemodynamic
signatures consistently dominated model performance, underscoring
their central role as early indicators of AKI risk.

Within each dataset, three cohorts were defined based on the timing
of AKI onset (no AKI within the first 24, 48, or 72 h after ICU admis-
sion). The study flow and cohort definition are illustrated in
Supplementary material online, Figure S4. Baseline characteristics, in-
cluding demographics, admission diagnoses, severity scores, and ICU
outcomes, are summarized in Table 1 for each dataset.

Acute kidney injury prediction
performance with model sCr+/BUN+

In all cohorts, prediction accuracy improved with longer horizons.
Importantly, while sCr and BUN contributed when included, systemic
haemodynamic and physiological features already enabled robust
prediction in the absence of renal biomarkers. In MIMIC-IV, the
auROC increased from 0.84 (95%Cl, 0.80-0.89) at 24 h to 0.85
(5%Cl, 0.80-0.90) at 72 h. The correlation between predicted risk
and sCr was: 0.45 at 24 h (P <0.001), 0.44 at 48 h (P <0.001), and
0.43 at 72 h (P < 0.001).

In elCU, auROC rose from 0.64 (95%Cl, 0.64-0.65) at 24 h to 0.72
(95%Cl, 0.71-0.73) at 72 h, with stable correlations to sCr: 0.26 at 24 h
(P<0.001) and 48 h (P < 0.001), and 0.25 at 72 h (P < 0.001).

In the APHP-burn cohort, auROC increased from 0.75 (95%Cl,
0.72-0.78) to 0.79 (95%Cl, 0.75-0.82) between 24 and 72h.
Correlation with sCr was 0.27 at 24 h (P<0.001) to 0.16 at 72 h
(P < 0.001).

Additional metrics and visualizations are presented in Table 2 and
Supplementary material online, Figures S5 and S6.

Acute kidney injury prediction

performance of model sCr—/BUN-—

In the MIMIC-IV cohort, the sCr—/BUN— model yielded auROCs of
0.74 (95%Cl, 0.68-0.79), 0.75 (95%Cl, 0.69-0.80), and 0.78 (95%ClI,
0.71-0.85) at 24, 48, and 72 h, respectively. These were significantly
lower than those of the sCr+/BUN+ model at all time points (P <
0.001, P <0.001, and P=0.001), with NRIs favouring the sCr+/BUN+
model: 0.22 (95%Cl, 0.12-0.32; P <0.001), 0.19 (95%ClI, 0.09-0.29;
P <0.001), and 0.14 (95%Cl, 0.01-0.27; P=0.03). In the elCU cohort,
auROCs for the sCr—/BUN— model were 0.63 (95%Cl, 0.62-0.63),
0.70 (95%Cl, 0.70-0.71), and 0.73 (95%Cl, 0.72-0.74) at 24, 48, and
72 h, respectively. At 24 h, the sCr+/BUN+ model performed signifi-
cantly better [P <0.001; NRI=0.02 (95%Cl, 0.01-0.03); P < 0.001].
However, at 48 and 72 h, performance significantly favoured the sCr
—/BUN— model (P<0.001 and P=0.001), with negative NRIs of
—0.02 (95%Cl, —0.03 to —0.01; P=0.003) and —0.02 (95%Cl, —0.03
to —0.001; P =0.03), respectively. In the APHP-burn cohort, the sCr
—/BUN— model achieved auROCs of 0.75 (95%Cl, 0.72-0.78), 0.78
(95%Cl, 0.75-0.81), and 0.77 (95%Cl, 0.71-0.73) at 24, 48, and 72 h.
Notably, in this high-stress environment, adding sCr and BUN did
not yield any performance benefit, underscoring the sufficiency of sys-
temic signatures under extreme physiological stress (Figure 1 and
Supplementary material online, Table S2).

All additional performance metrics are provided in Table 2 and
Supplementary material online, Figures S5 and Sé.

Renal prognosis prediction performance

MAKE prediction was limited to patients with an ICU stay >7 daysand a
prediction window >4 days before event onset to ensure prognostic
relevance. In the MIMIC-IV cohort (n = 104; 17.3% with MAKE), predic-
tion performance was comparable between models: auROC 0.73 (95%
Cl, 0.61-0.84) for the sCr+/BUN+ model vs. 0.77 (95%Cl, 0.65-0.89)
for the sCr—/BUN— model (P = ns). No significant reclassification im-
provement was observed [NRI=—0.05 (95%Cl, —0.18 to 0.07); P =
0.41]. In the elCU cohort (n=13536; 23.6% with MAKE), the
sCr+/BUN+ model significantly outperformed the sCr—/BUN— model
[auROC 0.76 (95%Cl, 0.75-0.77) vs. 0.67 (95%Cl, 0.65-0.68); P <
0.001], with improved reclassification [NRI=0.15 (95%Cl, 0.13—
0.17); P < 0.001]. In the APHP-burn cohort, 72 patients (5.8%) experi-
enced MAKE. Both models had similar discrimination [auROC 0.88
(95%Cl, 0.84-0.92) vs. 0.87 (95%Cl, 0.83-0.90); P = 0.176], but reclas-
sification significantly favoured the sCr+/BUN+ model [NRI=0.07
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Table 1 Patients characteristics in cohorts

Variable

APHP-burn
(n=1626)

elcU
(n=120303)

MIMIC IV
(n = 960)

General
Age, years, median, [IQR]
Sex, male, n (%)
IMC, median, [IQR]
Comorbidities
Charlson score, median, [IQR]
Cardiovascular comorbidities [n (%)]
Neurologic comorbidities [n (%)]
Admission
Sepsis [n (%)]
Trauma [n (%)]
Other
Heart rate (beats/minute)
MAP (mmHg)
Respiratory rate (beats/minute)
Body temperature (C)
SpO2 (%)
Haemoglobin (g/dL)
Platelets (K/uL)
WBC (K/uL)
BUN (mg/dL)
Serum creatinine (mg/dL)
Serum glucose (mg/dL)
Serum chloride (mEq/L)
Bicarbonate (mmol/L)
Serum potassium (mEq/L)
Serum sodium (mEq/L)
eGFR (mL/min/1.73 m?)
Severity score
IGSII
SOFA
Outcomes
Length of stay (hours)
Mortality [n (%)]
Renal replacement therapy [n (%)]
Vasopressors therapy [n (%)]
AKI after 24 h
AKI after 48 h
AKl after 72 h
MAKE

50.6 [34.4, 64.9]
965 (59.3%)
24.8 [22.2, 28.7]

1.0 [0.0, 3.0]
400 (24.6%)
39 (2.4%)

NC
NC

90.5 [78.0, 104.0]
84.0 [74.0, 97.0]
19.0 [15.0-23.0]
36.9 [36.4-37.4]
98.0 [96.0-100.0]
131 [11.2-14.9]
255.0 [192.5-334.5]
112 [83-16.0]
48 [3.6-64]
0.8[0.6-1.0]
1153 [99.1-147.7]
102.0 [99.0-105.0]
22.0 [20.0-24.0]
40 [3.7-43]
138.0 [136.0-140.6]
104.6 [85.6-119.3]

18.0 [11.0, 29.2]
40[10,50]

351.5 [1713, 731.1]
247 (15.2%)
89 (5.5%)
292 (18.0%)
642 (39.5%)
387 (23.8%)
257 (15.8%)
72 (4.4%)

65.0 [53.0-76.0]
65066 (54.1%)
27.5 [23.5-32.9]

3.0 [2.0-5.0]
45961 (38.2%)
11913 (9.9%)

16709 (13.9%)
4751 (3.9%)

87.0 [74.0-103.0]
83.0 [71.0-96.0]
19.0 [16.0-23.0]
36.7 [36.4-37.1]
98.0 [96.0-100.0]
11.0 [9.3-12.6]
192.0 [142.0-251.0]
10.7 [7.7-148]
19.0 [13.0-31.0]
1.0 [0.7-1.4]
1280 [104.0-167.0]
105.0 [101.0-108.0]
24.0 [21.0-27.0]
40 [3.7-44]
139.0 [136.0-141.0]
76.9 [45.6-99.5]

52.0 [43.0-61.0]
5.0 [0.0-9.0]

57.0 [39.0-98.0]
10738 (8.9%)
5231 (4.3%)
17 069 (14.2%)
18610 (15.4%)
6290 (5.2%)
3210 2.7%)
3190 (2.6%)

60.0 [48.0-72.0]
488 (50.8%)
27.3 [26.5-35.5]

40 [2.0-6.0]
336 (35.0%)
214 (22.3%)

NC
NC

87.0 [75.0-103.0]
84.0 [73.0-97.0]
18.0 [15.0-22.0]
36.8 [36.5-37.2]
97.0 [94.5-98.0]
10.2 [8.8-11.6]
205.0 [151.0-269.2]
104 [7.5-14.5]
14.0 [10.0-20.0]
0.7 [0.6-0.9]
123.0 [103.0-151.0]
105.0 [101.0-108.0]
23.0 [21.0-26.0]
40 [3.7-4.4]
139.0 [136.0-141.0]
97.3 [79.4-110.5]

29.0 [22.0-37.0]
3.0 [2.0-5.0]

177.6 [140.0-257.1]

34 (3.5%)

7 (0.7%)

241 (25.1%)

93 (9.7%)
4 (8.8%)
4 (4.7%)
9 (2.0%)

o~ o~ o~ —~

(95%Cl, 0.004-0.14); P=10.037], suggesting that systemic physiology
carries prognostic value beyond short-term AKI prediction (Figure 2;
Table 2; Supplementary material online, Table S2).

Models prediction according to KDIGO

physiological parameter

In the MIMIC-IV cohort, both models achieved their highest perform-
ance for AKI-UO, with the sCr+/BUN+ model significantly outper-
forming the sCr—/BUN— model [auROC 0.91 (95%Cl, 0.88-0.94) vs.
0.83 (95%Cl, 0.79-0.87) at 24 h; P <0.001, and 0.91 (95%Cl, 0.88—

0.94) vs. 0.83 (95%Cl, 0.78-0.88) at 72 h; P=10.001]. In the elCU co-
hort, the best discrimination was for AKI-sCr using the sCr+/BUN+
model, with auROC increasing from 0.64 [95%Cl, 0.63-0.64] at 24 h
to 0.77 [95%Cl, 0.76-0.77] at 72 h. In the APHP-burn cohort, both
models performed well for AKl-sCr: AUROCs for sCr+/BUN+ rose
from 0.85 [95%Cl, 0.82-0.88] to 0.88 [95%Cl, 0.85-0.91], and for
sCr—/BUN- from 0.86 [95%Cl, 0.83-0.88] to 0.87 [95%Cl, 0.84—
0.90]. For AKI-UO, predictive performance was lower and similar be-
tween models across all time points (see Supplementary material
online, Figures S7-S9; Supplementary material online, Tables S3 and
S4). These findings suggest that haemodynamic signatures are
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Table 2 Predictive performance value and performance parameters value according to cohorts and models

auROC 95%CI Sensitivity
Models with sCr and BUN
MIMIC IV
24 h 0.842 [0.8, 0.885] 0.806
48 h 0.838 [0.79,0.881] 0.81
72h 0.85 [0.795, 0.9] 0.818
MAKE 0.728 [0.607, 0.841] 0.579
elCU cohort
24 h 0.641 [0.636, 0.645] 0.576
48 h 0.687 [0.68, 0.693] 0.713
72h 0.719 [0.71, 0.727] 0.699
MAKE 0.758 [0.749, 0.767] 0.734
APH-burn cohort
24 h 0.753 [0.721, 0.781] 0.611
48 h 0.79 [0.76, 0.818] 0.661
72h 0.79 [0.753, 0.823] 0.642
MAKE 0.879 [0.838, 0.918] 0.792
Models without sCr and BUN
MIMIC IV
24 h 0.737 [0.68,0.79] 0,57
48 h 0.752 [0.691, 0.803] 0.607
72 h 0.781 [0.706, 0.846] 0.705
MAKE 0.767 [0.648, 0.885] 0.632
elCU cohort
24 h 0.627 [0.622, 0.632] 0.649
48 h 0.699 [0.692, 0.706] 0.643
72h 0.731 [0.722, 0.739] 0.69
MAKE 0.665 [0.654, 0.676] 0.632
APH-burn cohort
24 h 0.751 [0.72,0.779] 0.556
48 h 0.778 [0.746, 0.807] 0.607
72h 0.769 [0.73, 0.805] 0.704
MAKE 0.866 [0.825, 0.904] 0.792

Specificity PPV NPV Accuracy
0.775 0.288 0.973 0.778
0.775 0.269 0.975 0.778
0.775 0.163 0.988 0.777

0.8 0.393 0.895 0.76
0.626 0.369 0.795 0.612
0.554 0.17 0.938 0.572
0.623 0.108 0.969 0.627
0.655 0.396 0.889 0.674
0.787 0.794 0.601 0.686
0.781 0.715 0.742 0.731
0.808 0.642 0.808 0.75
0.834 0.228 0.985 0.832
0.787 0.232 0.942 0.765
0.787 0.226 0.951 0.77
0.784 0.13 0.979 0.746

0.8 0.414 0.907 0.769

0.53 0.344 0.799 0.563
0.642 0.187 0.933 0.642
0.648 0.114 0.97 0.651
0.609 0.333 0.843 0.615
0.835 0.819 0.584 0.675
0.835 0.748 0.725 0.733
0.72 0.575 0.819 0.715
0.762 0.171 0.983 0.764

particularly informative for creatinine-defined AKI in high-stress con-
texts, but less sensitive for urine-output—driven definitions.

Timing of models for prediction

The time interval between model prediction and actual onset of AKl was
assessed across the different time-point cohorts (24, 48, 72 h). Across
all datasets, both models anticipated AKI well in advance, with median
lead times exceeding 70 h. Importantly, the model using haemodynamic
and physiological parameters alone (without renal biomarkers) main-
tained similar or even longer lead times compared with the biomarker-
based model, reinforcing its clinical utility as an early warning tool.

In the MIMIC-IV cohort, the lead time from prediction to AKI onset
increased with earlier prediction windows. Notably, the sCr—/BUN—
model demonstrated longer lead time with a median time in hours
of 45 [IQR: 25-74] (24 h) to 71 [IQR: 53-111] (72 h) compared to
the sCr+/BUN+ model with a median time of 36 [IQR: 26—64]
(24 h) to 67 [IQR: 52-117] (72 h) (Figure 3, Supplementary material
online, Table S5).

In the elCU cohort, median time increased from 15 h [IQR: 7-35]
(24 h) to 78 h [IQR: 55-126] (72 h) for the sCr+/BUN+ model, and

from 15 h [IQR: 7-37] (24 h) to 78 h [IQR: 56-127] (72 h) for the
sCr—/BUN— model. No significant differences in lead times were ob-
served between the two models at any prediction timepoint
(Figure 3, Supplementary material online, Table S5).

In the APHP-burn study at the 24-h prediction timepoint, the me-
dian lead time was 31 h [IQR: 12-87] for the sCr+/BUN+ model and
31.81 h [IQR: 13-79] for the sCr—/BUN— model. At the 72 h predic-
tion timepoint, the lead time increased to 105 h [IQR: 57-181] and
105 h [IQR: 59-171], respectively (Figure 3, Supplementary material
online, Table S5).

To evaluate prediction performance over time before AKI onset, a
sensitivity analysis was conducted at 12, 24, and 36 h prior to diagnosis.
In the MIMIC-IV cohort, auROCs decreased slightly with increasing pre-
diction horizon: from 0.84 (95%Cl, 0.78-0.89) to 0.82 (95%Cl, 0.75-
0.88) for the sCr+/BUN+ model, and from 0.77 (95%Cl, 0.69-0.83)
to 0.74 (95%Cl, 0.67-0.81) for the sCr—/BUN— model. In the elCU co-
hort, performance also declined: sCr+/BUN+ auROC dropped from
0.71 (95%Cl, 0.70-0.72) to 0.68 (95%Cl, 0.67-0.69), and sCr—/BUN
— from 0.72 (95%Cl, 0.71-0.73) to 0.70 (95%Cl, 0.69-0.71). In the
APHP-burn cohort, the sCr+/BUN+ model decreased from 0.78
(95%Cl, 0.74-0.81) to 0.75 (95%Cl, 0.71-0.79), and the sCr—/BUN—
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Figure 1 Prediction performance according to cohorts and dataset using sCr+/BUN+ and sCr—/BUN— model. auROC, area under the curve of the
receiver operating curve; AKI, acute kidney injury. Tests were assessed for sCr+/BUN+ vs. sCr—/BUN—: ns, non-significant. * = P-value <0.001.

920z Arenuer £z uo 1sanb Aq 8/9G€+8/0G L1€1Z/1///9191ME/UpIYa/WwOoo"dNo-olWapED.//:SA)Y WOl PaPEOjuMOd



L. Boutin et al.

Downloaded from https://academic.oup.com/ehjdh/article/7/1/ztaf150/8435678 by guest on 23 January 2026

Figure 2 Prediction performance of models for MAKE. MAKE, major adverse kidney event.



Prediction of AKI without renal parameters, an external validation

Figure 3 Duration between high prediction probability of AKI and onset of AKI.

920z Arenuer £z uo 1sanb Aq 8/9G€+8/0G L1€1Z/1///9191ME/UpIYa/WwOoo"dNo-olWapED.//:SA)Y WOl PaPEOjuMOd



10

L. Boutin et al.

model from 0.76 (95%Cl, 0.72-0.80) to 0.75 (95%Cl, 0.70-0.79) (see
Supplementary material online, Figure S10; Supplementary material
online, Table S6).

Discussion

This multicentre external validation study demonstrates that the ML
models developed in this work could accurately predict AKI and
MAKE across diverse ICU populations—even in the absence of sCr
and BUN as input features. Our findings show that systemic haemo-
dynamic and physiological signatures alone carry sufficient information
to anticipate kidney injury, achieving predictive performance compar-
able to models including sCr and BUN. Remarkably, the sCr—/BUN—
model maintained good performance even when predicting AKI
defined by sCr criteria. Moreover, median lead times exceeded 70 h,
providing a clinically actionable window to intervene well before con-
ventional renal biomarkers signal injury.

These results support a paradigm shift: reliable AKI prediction
can be achieved with renal-independent, continuously available
bedside data. Haemodynamic-driven models thus offer a practical
and scalable solution for early kidney risk stratification, particularly
relevant in critical care settings where continuous monitoring is
standard. This promotes a new non-invasive method to manage
AKI and its prognosis.

The term ‘haemodynamic signature’ refers to the multivariate and
time-dependent combinations of cardiovascular and respiratory para-
meters that precede AKI onset. Rather than detecting isolated abnor-
malities such as hypotension or tachycardia, the model captures
complex patterns—sustained elevations in heart rate relative to
mean arterial pressure, progressive loss of blood pressure variability,
concurrent increases in respiratory rate and oxygen extraction, or sub-
tle acid—base shifts—that collectively signal early systemic stress and
microcirculatory compromise. These non-linear interactions, continu-
ously integrated by the model, likely represent the transition from com-
pensated to decompensated physiology preceding overt renal
dysfunction. The dominance of MAP, heart rate, and respiratory rate
among top importance features thus reflects physiologically interpret-
able, clinically plausible dynamics rather than opaque model behaviour.

Despite substantial differences in patient characteristics and AKl in-
cidence across the APHP-burn, elCU, and MIMIC-IV cohorts, the pre-
dictive performance of the models remained robust.”>"® This highlights
the generalizability and transferability of our approach across diverse
ICU populations.

Several Al-based models have been developed for AKI prediction,
but most of these approaches rely heavily on renal biomarkers such
as sCr, urine output, or laboratory-specific data, and are generally de-
signed for static risk assessment at admission rather than real-time
physiological monitoring. In contrast, our model focuses exclusively
on systemic haemodynamic and physiological variables, enabling
biomarker-independent early prediction and continuous risk updating.
Despite this difference in design, its discrimination (auROC ~ 0.75—
0.85 across cohorts) compares favourably with previously reported ex-
ternally validated models, which typically range between 0.80 and
0.82.""" This performance, combined with a median predictive lead
time exceeding 70 h, highlights that systemic signatures alone provide
sufficient information for actionable, early kidney-risk stratification.

Interestingly, model performance was highest in the MIMIC-IV co-
hort, likely reflecting that the algorithm was primarily trained on this da-
taset and was fitted to MIMIC IV characteristic population.'® In
contrast, the APHP-burn and elCU cohorts provided critical insights
into performance in more heterogeneous and real-world ICU settings,
including burn patients and a multicentre ICU population, respectively.
The burn ICU cohort is especially important: in this extreme stress

setting, inclusion of sCr and BUN conferred no benefit, underscoring
the robustness of systemic physiological signatures as early warning
signals. In burn patients, the superior performance of non-renal para-
meters likely reflects the distinct pathophysiology of burn-associated
AKI. Severe burns trigger a systemic inflammatory and hypermeta-
bolic response characterized by massive capillary leak, hypovolemia,
and catecholamine-driven vasoplegia, which profoundly alter car-
diovascular and microcirculatory homeostasis before renal injury
becomes biochemically apparent. These perturbations manifest
as measurable changes in heart rate, arterial pressure, oxygen-
ation, and acid—base balance—features continuously captured by
haemodynamic monitoring. In contrast, sCr and BUN are unreli-
able early indicators in this setting, as they are affected by fluid re-
suscitation, muscle catabolism, sepsis (resulting in a decrease in
sCr production)' and non-steady-state kinetics. Hence, haemo-
dynamic and physiological data more directly represent the early
systemic drivers of renal dysfunction in burns, explaining the compar-
able or even superior predictive accuracy of biomarker-independent
models in this cohort.

One of the main strengths of this study is the demonstration that re-
liable AKI prediction is feasible without relying on sCr or BUN biomar-
kers that define AKI but may not always accurately capture early kidney
injury. The superior late-stage prediction observed in elCU with the
sCr—/BUN— model, and the equivalent performance in burns, both
highlight that systemic haemodynamics, respiratory signals, and basic
biochemical variables are early markers of cardio-renal stress, preced-
ing overt dysfunction captured by delayed renal biomarkers.

Prediction of MAKE was also effective, reinforcing the potential role
of non-renal features in prognostic modelling. Notably, lead times from
prediction to AKI onset were substantial—often exceeding 72 h—
indicating a clinically meaningful window for preventive intervention.*®
Although model performance declined modestly when extending the
prediction horizon, early warnings remained feasible, suggesting prac-
tical utility for real-time monitoring. The definition of MAKE at ICU
discharge and limited to patients with a length of stay exceeding 7
days was chosen to ensure sufficient follow-up for assessing long-term
renal recovery and RRT use. However, this approach may introduce
survivorship bias, excluding patients with early mortality or short ICU
stays, and variable follow-up bias, since the observation period differs
across patients. This limitation reflects the constraints of retrospective
datasets without standardized post-discharge follow-up. To mitigate
this, a sensitivity analysis using a fixed 28-day mortality including all
admitted patient endpoint confirmed consistent model performance,
suggesting that these potential biases did not materially affect our con-
clusions (see Supplementary material online, Figure S11).

Model performance in the external validation cohort was highest
for AKI-sCr, which is expected given the reliance on sCr in both
AKI definitions and model training. However, the ability of the sCr—/
BUN— model to achieve strong predictive accuracy for creatinine-
defined endpoints—without using creatinine itself—confirms the
robustness of systemic haemodynamic signatures as anticipatory
markers of kidney dysfunction.

Despite the major above-mentioned advances our study has some
limitations. First, its retrospective design may introduce biases related
to data quality, missingness, and unmeasured confounders. Second,
variation in data frequency, measurement practices, and clinical docu-
mentation across datasets may have influenced model performance
and comparability. XGBoost was chosen for its strong performance
on structured clinical data, robustness across heterogeneous ICU po-
pulations, and ability to provide interpretable feature importance.
Compared with other algorithms previously tested (not published) (lo-
gistic regression, SVM, random forest), it consistently achieved higher
accuracy and stability. Its balance between predictive performance,
computational efficiency, and explainability justified its use in this study.
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While full SHAP cannot be fully shared for intellectual-property
reasons, representative feature importance plots are provided in
the supplementary material. These confirm that the model’s predic-
tions are primarily driven by physiologically meaningful variables
such as mean arterial pressure, heart rate, oxygen saturation, and
respiratory rate.

Finally, while the sCr—/BUN— model demonstrates promising results,
clinical applicability remains to be established and will require prospective
validation in real-time settings, ideally through integration into clinical
decision-support systems for proactive cardio-renal management.

From a clinical perspective, a real-time alert generated by this model
could serve as an early trigger to reassess kidney-protective strategies.
When a patient is identified as high-risk, clinicians may verify and opti-
mize haemodynamic stability—ensuring adequate perfusion pressure,
reassessing fluid balance, and adjusting vasopressor support as needed.
It should also prompt a careful review of ongoing or planned exposure
to nephrotoxic agents and a reinforcement of renal monitoring through
close follow-up of urine output and sCr trends. Importantly, such an
alert may also guide the search for underlying complications, such as
sepsis or bleeding, that could further compromise renal and overall
prognosis. In selected cases, early multidisciplinary consultation with
nephrology or critical care specialists may be warranted. These actions
align with current KDIGO and ESICM recommendations and illustrate
how physiology-based predictive tools can translate into actionable,
preventive bedside interventions.*

The clinical translation of this work will follow a progressive pathway,
starting with prospective validation of the model in real-time ICU mon-
itoring systems to confirm predictive accuracy and lead time in daily
practice. Once validated, the algorithm could be integrated into bedside
monitoring or electronic health records as an automated kidney risk
alert, displaying dynamic risk trends to support early preventive actions.
A subsequent interventional trial will be required to evaluate whether
early alerts effectively reduce AKI incidence and improve renal out-
comes. From a regulatory perspective, the model would qualify as med-
ical device software and would require certification, with specific
attention to explainability, auditability, and data protection.

Although several studies have already evaluated similar Al-based alert
systems for AKI prediction,"? the overall level of evidence supporting
a tangible clinical benefit from such implementations remains limited.
The key differentiating feature of the present approach lies in its early
detection capability (72 h) compared to existing study, which may pro-
vide a broader actionable window for intervention and renal protection
before overt injury occurs.

Conclusion

This study demonstrates the feasibility of predicting AKI and renal
prognosis without relying on traditional renal biomarkers, using
primarily systemic physiological and haemodynamic parameters.
Haemodynamic-driven Al models achieved early and robust perform-
ance across heterogeneous ICU populations, including burn patients,
underscoring that systemic signatures alone carry sufficient information
to anticipate kidney dysfunction. These findings represent a meaningful
step towards real-time, accessible, and proactive cardio-renal risk mon-
itoring tools in critical care settings.

Supplementary material

Supplementary material is available at European Heart Journal — Digital
Health.
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